November 22, 2024

Webb Telescope Uncovers Evidence of Hydration on Asteroid Psyche

Webb Telescope Uncovers Evidence Of Hydration On Asteroid PsychePsyche Impact James Webb Space Telescope - Webb Telescope Uncovers Evidence Of Hydration On Asteroid Psyche
An SwRI-led team used NASA’s Webb telescope, shown in the bottom right corner of this illustration, to confirm the presence of hydrated minerals on the surface of Psyche, a massive and heavily metallic body in the main asteroid belt. These findings suggest a complex history for this interesting asteroid, which many scientists think could be the remnant core of a protoplanet, including impacts with hydrated asteroids. Credit: Southwest Research Institute

NASA’s Webb telescope has identified hydroxyl molecules on Psyche, a metallic asteroid, hinting at a more intricate history.

Psyche’s origin could challenge existing models, indicating it might have formed beyond the solar system’s “snow line.” This discovery will refine our understanding of asteroid compositions and water distribution in the solar system.

Discovery of Hydroxyl Molecules on Psyche

Using data from NASA’s James Webb Space Telescope, a Southwest Research Institute-led team has confirmed hydroxyl molecules on the surface of the metallic asteroid Psyche. The presence of hydrated minerals suggests a complex history for Psyche, important context for the NASA spacecraft en route to this interesting asteroid orbiting the Sun between Mars and Jupiter.

Asteroid Psyche (Illustration) - Webb Telescope Uncovers Evidence Of Hydration On Asteroid PsycheAsteroid Psyche (Illustration) - Webb Telescope Uncovers Evidence Of Hydration On Asteroid Psyche
This illustration depicts the 140-mile-wide (226-kilometer-wide) asteroid Psyche, the target of NASA’s mission of the same name. Based on data obtained from Earth, scientists believe the asteroid is a mixture of metal and rock. Credit: NASA/JPL-Caltech/ASU

Psyche: A Massive Asteroid With a Mysterious Past

At about 140 miles in diameter, Psyche is one of the most massive objects in the main asteroid belt. Previous observations indicate that Psyche is a dense, largely metallic object that could be a leftover core from a planet that experienced a catastrophic collision. On October 13, 2023, NASA launched the Psyche spacecraft, which is traveling 2.2 billion miles to arrive at the asteroid in August 2029.

“Using telescopes at different wavelengths of infrared light, the SwRI-led research will provide different but complementary information to what the Psyche spacecraft is designed to study,” said SwRI’s Dr. Tracy Becker, second author of a new American Astronomical Society’s Planetary Science Journal paper discussing these findings.

Implications for Solar System Evolution

“Our understanding of solar system evolution is closely tied to interpretations of asteroid composition, particularly the M-class asteroids that contain higher concentrations of metal,” said Center for Astrophysics | Harvard & Smithsonian’s Dr. Stephanie Jarmak, the paper’s lead author, who conducted much of this research while at SwRI. “These asteroids were initially thought to be the exposed cores of differentiated planetesimals, a hypothesis based on their spectral similarity to iron meteorites.”

SpaceX Falcon Heavy Rocket Launches With Psyche Spacecraft Onboard - Webb Telescope Uncovers Evidence Of Hydration On Asteroid PsycheSpaceX Falcon Heavy Rocket Launches With Psyche Spacecraft Onboard - Webb Telescope Uncovers Evidence Of Hydration On Asteroid Psyche
NASA’s Psyche spacecraft, atop a SpaceX Falcon Heavy rocket, lifts off from Kennedy Space Center’s historic Launch Complex 39A in Florida on October 13, 2023. The Psyche mission will study a metal-rich asteroid with the same name, located in the main asteroid belt between Mars and Jupiter. This is NASA’s first mission to study an asteroid that has more metal than rock or ice. Credit: SpaceX

Hydrated Minerals and Psyche’s Complex History

The Webb data point to hydroxyl and perhaps water on Psyche’s surface. The hydrated minerals could result from external sources, including impactors. If the hydration is native or endogenous, then Psyche may have a different evolutionary history than current models suggest.

“Asteroids are leftovers from the planetary formation process, so their compositions vary depending on where they formed in the solar nebula,” said SwRI’s Dr. Anicia Arredondo, another co-author. “Hydration that is endogenous could suggest that Psyche is not the remnant core of a protoplanet. Instead, it could suggest that Psyche originated beyond the ‘snow line,’ the minimum distance from the Sun where protoplanetary disc temperatures are low enough for volatile compounds to condense into solids, before migrating to the outer main belt.”

However, the paper found the variability in the strength of the hydration features across the observations implies a heterogeneous distribution of hydrated minerals. This variability suggests a complex surface history that could be explained by impacts from carbonaceous chondrite asteroids thought to be very hydrated.

Broad Implications for Water Distribution in the Solar System

Understanding the location of asteroids and their compositions tells us how materials in the solar nebula were distributed and have evolved since formation. How water is distributed in our solar system will provide insight into the distribution of water in other solar systems and, because water is necessary for all life on Earth, will drive where to look for potential life, both in our solar system and beyond.

Reference: “Estimate of water and hydroxyl abundance on asteroid (16) Psyche from JWST data” by Stephanie G. Jarmak, Tracy M. Becker, Charles E. Woodward, Casey I. Honniball, Andrew S. Rivkin, Margaret M. McAdam, Zoe A. Landsman, Saverio Cambioni, Thomas G. Müller, Driss Takir, Kurt D. Retherford, Anicia Arredondo, Linda T. Elkins-Tanton, Planetary Science Journal.
arXiv:2407.12162

NASA’s Webb telescope, developed in partnership with the European and Canadian space agencies, is part of the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy. The Psyche mission is led by Arizona State University. NASA’s Jet Propulsion Laboratory is responsible for mission management, operations, and navigation.